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We report on the mechanism of hopping for bound excitons under an energy gradient. By means

of a Monte-Carlo simulation, we show that this mechanism explains the movement of bound

excitons observed experimentally. We show that the speed of the excitons decreases quickly

with temperature. Thanks to an effective medium approximation, we deduce an analytical model

to estimate the average speed at T¼ 0 K. Finally, we compare our simulations results to

the speed observed in bent ZnO wires and find a good agreement between theory and

experiments. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863319]

The ability to tune the strain in different structures is

interesting for many applications such as the enhancement of

the mobility in transistors1 or the engineering of the optical

polarization properties of heterostructures.2,3 Recently, it has

been shown that it is possible to design nano/micro-

structures to obtain a strain gradient and control the motion

of excitons.4,5 In particular, bent nanowires have gained con-

siderable attention because of the possibility to tune the

bandgap without plastic relaxation.6–8 For instance, it has

been recently demonstrated that excitons can move because

of the strain gradient induced by the bending of a wire.9

However, at T¼ 10 K at which the experiments are per-

formed, the photoluminescence of ZnO wires is dominated

by the emission coming from the donor bound exciton

(D�X). Thus, experimental evidence indicates that donor

bound excitons are drifted by the strain gradient, against sim-

ple views implied by their name: “donor bound exciton.”

The motion of bound excitons has already been

observed in inhomogeneous materials such as GaAsP:N,10,11

InGaN,12 and MgZnO alloys.13 In these random alloys, the

transfer of such excitons from one donor to another is driven

by the tunneling of exciton to lower states. The same mecha-

nism has been observed and successfully described by a sto-

chastic model of exciton transfer in homogeneous GaP with

well-defined impurities levels.14 However, in such samples,

the random distribution of lowest states makes it difficult to

obtain an accurate estimation of the characteristic time for

the exciton to jump from one donor to the other.

The strain-induced energy gradient in bent micro/nano-

wires directly builds a “donor ladder” as observed in the

scheme of Figure 1. Indeed, because of the continuous

change of bandgap energy, the relative positions of donors

are sorted by energy along the strain gradient. This arrange-

ment of donors gives the possibility to get an accurate esti-

mation of the hopping rate of excitons, unlike in the case of

inhomogeneous materials.

In this Letter, we propose a model for the hopping pro-

cess of donor bound excitons in the presence of an energy

gradient. We compute the exciton dynamics by means of

Monte-Carlo (MC) simulations taking into account the

probability for the transfer of an exciton from a donor to

another. We compare the case of zero temperature to the

case of a nonzero temperature and show that the mean speed

should decrease with temperature against common wisdom.

Then, by assuming an effective medium, we deduce an ana-

lytical solution to describe the hopping process at T¼ 0 K

and we discuss the effect of the temperature under this

assumption.

The hopping rate �ij from one donor i at an energy Ei to

another one j at an energy Ej is given by15,16

�ij ¼ �0e
�2

Rij
a0 if Ej < Ei

�ij ¼ �0e
�2

Rij
a0 e

Ei�Ej
kBT if Ej > Ei;

8><
>: (1)

where �0 is a constant corresponding to the typical time con-

stant of the process, a0 is the Bohr radius of the exciton

bound to a donor, kB is the Boltzmann constant, Rij is the dis-

tance between the two donors, and T is the lattice tempera-

ture. Equation (1) illustrates that the hopping rate decreases

exponentially with the distance between donors and that the

rate for hopping to a higher energy state is thermally acti-

vated. As a matter of fact, if T¼ 0 K, only transitions to

lower states are allowed. In the context of an energy

FIG. 1. Scheme of hopping mechanism of bound exciton in an energy
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gradient, it means that excitons can move only towards the

low energy side.

In order to determine the mean speed of bound excitons

in an energy gradient, we carry out MC simulations using

the following model. First, we define within a finite 3D vol-

ume, the random positions of N donors. We then arbitrary set

the energy gradient along the z-axis. To keep the model as

simple as possible, we consider a homogeneous energy gra-

dient Er defined as Er ¼ DE
Dz where DE is the energy differ-

ence over the distance Dz. This assumption is in good

agreement with the experimentally observed strain gradient

in bent ZnO wires.8,9 Then, we select one donor and we cal-

culate all the hopping rates �ij from this donor to any other.

The sum over all the donors gives us the transition time si

for the hopping to the next donor

1

si
¼
X
j 6¼i

vij: (2)

In order to choose the next donor, we choose randomly C, a

number between 0 and 1/si and use the cumulative distribu-

tion function fcum, defined as

fcumðjÞ ¼
Xj

k ¼ 1

k 6¼ i

vik: (3)

If fcumðjÞ < C < fcumðjþ 1Þ, then the next donor where the

exciton will be bound is the donor j. This method allows to

respect the relative probability of each transition: The most

probable donor has the maximum probability to be chosen.

By this means, we virtually reproduce the “choice” of the

exciton. We repeat this procedure until the exciton has trav-

elled along the z-axis over a given distance d � 1ffiffiffiffi
Nd

3
p , where

Nd is the donor concentration. By knowing the distance d
and the time stot to travel over this distance, we are able to

estimate the mean speed of the exciton along the energy gra-

dient. Figure 2 shows an example of trajectory of an exciton

in an energy gradient at T¼ 0 K for a donor concentration of

Nd ¼ 1018cm�3 and a Bohr radius a0 ¼ 5 nm. Thanks to the

energy gradient and the zero temperature, the exciton always

“chooses” a donor with a larger z-position. For this specific

case, assuming �0 ¼ 1013s�1,11 we deduce an average speed

of the exciton along the z-axis of 5.4 nm/ps.

Since we are dealing with a random process, we have to

repeat the process for a large number of excitons to obtain an

average speed of donor bound excitons in an energy gradient.

Figure 3(a) shows the average speed of excitons, resulting

from MC simulations for a domain of Lx ¼ 300 nm, Ly ¼ 300

nm, Lz ¼ 300 nm, and 10 000 trials for T¼ 0 K. We show the

results as a function of the Bohr radius of the donor bound

exciton. Here, it is worth noticing that for T¼ 0 K, the average

speed does not depend on the value of Er. Indeed, in this

case, the hopping is only allowed towards lower energy states

and does not depend on the energy difference (Eq. (1)). This

is the reason why we prefer to define an average speed rather

than an effective mobility of bound excitons.

In Figure 3(a), we observe a strong dependence of the

average speed on the Bohr radius. This could be easily

understood since the hopping rate exponentially depends on

Bohr radius (Eq. (1)). For Nd ¼ 1018 cm�3 and �0 ¼ 1013

s�1, the average speed changes from v ¼ 3:2� 10�3 nm/ps

for a0 ¼ 2 nm to v ¼ 590 nm/ps for a0 ¼ 15 nm. We plot in

Figure 3(b) the dependence of the exciton speed with respect

to the temperature. For finite temperatures, the value of Er

plays then an important role because the probability that an

exciton goes to a higher energy state is proportional to

e
Er zi�zjð Þ

kBT . The value Rhigh ¼ Er

kBT�
ffiffiffiffi
Nd

3
p gives information about

the ability of an exciton to go to higher energy states. If

Rhigh �1, then excitons travel only to lower states. In con-

trast, if Rhigh �1, excitons do not “feel” the energy gradient

and the probability to choose the higher or lower energy side

is equal. This behavior explains why, in Figure 3(b), the

speed decreases with temperature. Indeed, excitons travel

not only to z> 0 but also towards z< 0, thus, it takes more

FIG. 2. Example of the trajectory of an

exciton in an energy gradient along the

z-axis at T¼ 0 K for a donor concen-

tration of Nd ¼ 1018 cm�3 and a Bohr

radius a0 ¼ 5 nm. Blue crosses show

the donor positions and red dots show

the donors where the exciton actually

went. (a) x-z projection. (b) y-z projec-

tion. (c) 3D view.
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time to travel (in mean value) along the z-axis (z> 0). For an

energy gradient of 35 meV/lm,9 as shown in Table I, the

simulations give a value of v ¼ 1:6 nm/ps (resp. v ¼ 9:6
nm/ps) for T¼ 10 K and a0 ¼ 5 nm (resp. a0 ¼ 7 nm).

Experimentally, we deduce a speed around 5 nm/ps at 10 K.

In the following, we will consider the approximation of

an effective medium. Under this assumption (valid if

a0

ffiffiffiffiffiffi
Nd

3
p
�1), instead of considering a discrete nature of

donors, we consider a homogeneous density of donors.

Hence, we can replace the discrete summation by a triple in-

tegral. The mean transition time between donors at a position

x ¼ x0, y ¼ y0, and z ¼ z0 becomes then

1

s
¼
X1
j¼1

tij �
ð1
�1

ð1
�1

ð1
�1

Ndtðx; y; zÞdxdydz; (4)

with

t x; y; zð Þ ¼ �0e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ2þ y�y0ð Þ2þ z�z0ð Þ2

p
a0 if z > z0

t x; y; zð Þ ¼ �0e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð Þ2þ y�y0ð Þ2þ z�z0ð Þ2

p
a0 e�

Er z0�zð Þ
kBT if z < z0:

8>><
>>:

(5)

In addition, the mean hopping distance d between two donors

along the z-axis becomes

d ¼ s
ð1
�1

ð1
�1

ð1
�1
ðz� z0ÞNdtðx; y; zÞdxdydz: (6)

Finally, we deduce the speed v of bound excitons in such a

medium

v ¼ d

s
¼
ð1
�1

ð1
�1

ð1
�1
ðz� z0ÞNdtðx; y; zÞdxdydz: (7)

We first consider the case of T¼ 0 K where an analytical solu-

tion is existing. We get simple expressions for s, d, and v

1

s
¼ p

2
Nd�0a3

0

d ¼ 3

4
a0

v ¼ 3p
8

Nd�0a4
0:

8>>>>>><
>>>>>>:

(8)

In Figure 4(a), we compare the results of MC and effec-

tive medium simulation in the case of T¼ 0 K. We observe a

good agreement between both simulations for a0 > 10 nm

(Nd ¼ 1018 cm�3) which confirms the validity of the effec-

tive medium approximation for a0 >
ffiffiffiffiffiffi
Nd

3
p

. In contrast, for

a0 <
ffiffiffiffiffiffi
Nd

3
p

, the effective medium overestimates the speed

compared to the MC case.

For a finite temperature, there is no analytical solution

for Eqs. (4), (6), and (7). However, it is possible to obtain

solutions thanks to numerical integrations. Figure 4(b) shows

the numerical estimation in the effective medium approxima-

tion of the average speed of exciton with respect to the tem-

perature for different Bohr radii and donor concentrations.

For the energy gradient reported in our previous paper

Er ¼ 35 meV/lm,9 we observe a strong decrease of exciton

speed above T¼ 1 K. Depending on the donor concentration,

the speed decreases by a factor 3 to 4 from 1 K to 10 K. The

value extracted from time resolved cathodoluminescence

experiments9 is around 5 nm/ps at 10 K. Assuming a donor

concentration equal to Nd ¼ 5� 1018 cm�3, it means that

the Bohr radius of the donor bound exciton in ZnO should be

close to a0 ¼ 5 nm. This value is in good agreement with lit-

erature which estimates a Bohr radius of free exciton around

a0 ¼ 2:34 nm (Ref. 17) and 1.44 and 3.47 times this value

for the Bohr radius of donor bound exciton.18

FIG. 3. (a) Average speed of exciton at

T¼ 0 K as a function of the Bohr ra-

dius. (b) Average speed of exciton as a

function of temperature for two differ-

ent Bohr radius: a0¼ 5 nm (black

squares) and a0¼ 7 nm (red dots).

TABLE I. Average speed of exciton estimated by MC at T¼ 0 K and

T¼ 20 K for two Bohr radii of a0 ¼ 5 nm and a0 ¼ 7 nm.

a0 ¼ 5 nm a0 ¼ 7 nm

T¼ 0 K 4.9 nm/ps 24.9 nm/ps

T¼ 20 K 1.1 nm/ps 6.6 nm/ps
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However, if we observe a strong decrease of the hopping

speed with the temperature, it does not mean that an exciton

will not drift at higher temperatures. Indeed, if the hopping

process described before governs the dynamics of excitons at

low temperature in the case of highly doped semiconductors,

others mechanisms are also thermally activated. For instance,

when the temperature is increasing, the exciton dynamics will

be dominated by the drift of free excitons, where standard

exciton mobility mechanisms take place. The transition

between the two drift processes (localized to delocalized

states) is referred in the literature as the mobility edge.19,20

In conclusion, we compute by means of MC simulations

the speed of bound excitons in an energy gradient. We show

that the mean speed of excitons is strongly dependent to tem-

perature and Bohr radius. Thanks to an effective medium

approximation, we deduce an analytical model to estimate

the speed of bound exciton at T¼ 0 K and we show that this

model is valid for a0 � 1
ffiffiffiffiffiffi
Nd

3
p

. Finally, we compare our the-

oretical results with experimental ones and find a good

agreement. Our study therefore highlights the relevance of

hopping processes in exciton motion at low temperature.
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